2020年9月,習(xí)總書記在第75屆聯(lián)合國大會上鄭重提出,“我國CO2排放力爭于2030年前達到峰值,努力爭取2060年前實現(xiàn)碳中和”。 水務(wù)行業(yè) 作為能耗較密集的行業(yè),對電力、化學(xué)藥劑的消耗都直接或間接促使大量 溫室氣體排放 。因此,盡快通過技術(shù)創(chuàng)新、能源高效清潔利用、智能生產(chǎn)等手段實施低碳變革,降低行業(yè) 碳排放 ,有助于為全行業(yè)提供更為廣闊的發(fā)展空間。同時,以清潔能源替代化石能源消耗,建立綠色電力使用渠道,將有助于進一步抵消行業(yè)碳排放,賦能產(chǎn)業(yè)綠色低碳轉(zhuǎn)型。
1 水務(wù)行業(yè)與碳排放緊密相關(guān)
水務(wù)行業(yè)是指由原水、供水、節(jié)水、排水、污水處理及水資源回收利用等構(gòu)成的產(chǎn)業(yè)鏈,如圖1所示。城市水務(wù)行業(yè)是城市發(fā)展、居民生活和工業(yè)生產(chǎn)等的基礎(chǔ),其行業(yè)上游是原水的獲取,水資源獲取的形式(地表水、地下水)及水源地的品質(zhì)情況直接影響著供水成本與能耗;行業(yè)下游是污水與污泥的處理處置,城鎮(zhèn)居民耗水量、節(jié)水情況及污水廠工藝技術(shù)和智能化管理水平將直接影響污水處理的綜合能耗及藥劑消耗。
據(jù)數(shù)據(jù)統(tǒng)計,2020年全國城鎮(zhèn)污水處理全過程碳排放量為3 416.0萬t CO2,碳抵消量為769.1萬t CO2,凈排放量為2 646.9萬t CO2,全國城鎮(zhèn)供水系統(tǒng)碳排放量超過2 200萬t CO2。由此可見,水務(wù)行業(yè)實現(xiàn)碳減排對我國早日實現(xiàn)“碳達峰”“碳中和”有著重要意義。
1.1供水的碳排放
由水源處取得的原水在經(jīng)過原水管網(wǎng)輸送、水廠處理、供水管網(wǎng)輸送后送入千家萬戶。原水管網(wǎng)輸送、供水管網(wǎng)輸送過程中需通過泵.html'>多級泵站、泵房處理,此過程中水泵消耗電能的間接排放是主要的溫室氣體排放形式。水廠處理過程中一般不直接排放溫室氣體,其間接排放源于設(shè)備運行產(chǎn)生的能耗,以及預(yù)處理環(huán)節(jié)加氯、絮凝劑和消毒劑投加產(chǎn)生的藥耗。
趙榮欽等結(jié)合鄭州市水源供給情況及相關(guān)數(shù)據(jù)進行分析計算,結(jié)果表明,城市依靠地下水開采和南水北調(diào)供水的取水系統(tǒng)碳排放值達0.14 kg/m3,制水和輸配水過程能源強度分別為0.543 kW·h/m3和0.320 kW·h/m3。依照2020年全國單位火電發(fā)電量CO2排放量換算,制水和輸配水過程的CO2排放量分別為0.452 kg/m3和0.266 kg/m3,制水過程對碳排放的貢獻率更大。
1.2 污水處理的碳排放
生活污水處理的碳排放形式主要分為直接排放和間接排放。其中,直接排放一般為污水處理過程中,由于水中有機污染物被降解,釋放了CO2、CH4和N2O等溫室氣體,進入大氣;間接排放一般為污水處理過程中,所使用的包括電、氣和藥劑等所折算的碳排放。
馬博雅等通過調(diào)研提出,相較于直接排放,目前對于間接排放方面的研究較為深入,技術(shù)方向也較明確,相關(guān)研究主要集中在節(jié)能降耗和污水能源回用兩個方面。北京城市排水集團與深圳水務(wù)集團兩家規(guī)模較大的水務(wù)公司曾分別對污水處理過程溫室氣體排放情況進行測算,結(jié)果表明在污水處理的過程中,因電力消耗導(dǎo)致的間接排放及脫氮過程中產(chǎn)生的氮氧化物直接排放是溫室氣體排放量的主要組成,占排放總量的80%~90%。
2 水務(wù)行業(yè)碳減排可行性與路徑分析
2.1 供水過程的碳減排可行路徑
供水過程中的碳排放主要集中在管網(wǎng)輸送及處理設(shè)備用電、藥劑使用,減少藥劑消耗、推動節(jié)能減排、減少單位能耗碳排放量等措施均有助于實現(xiàn)供水環(huán)節(jié)的碳減排。
2.1.1 水源保護
現(xiàn)代飲用水在加工處理過程中,需經(jīng)加氯消毒去除大部分微生物,先后經(jīng)混凝沉降、煤砂濾池、活性炭池的過濾和吸附進行處理。因此,優(yōu)質(zhì)的水源地將提供更高品質(zhì)的原水,相應(yīng)地,其處理過程所消耗的藥劑量更低,碳排放更低。強化對水源地的保護,不僅有助于提高生態(tài)環(huán)境質(zhì)量,還能夠降低凈水處理過程中間接碳排放。
2.1.2 新能源應(yīng)用
提高非化石能源發(fā)電量是電力行業(yè)實現(xiàn)“碳達峰”的重要途徑。研究表明,水廠的能源消耗占到總成本的20%以上,其中包括水泵、風(fēng)機.html'>風(fēng)機等在內(nèi)的關(guān)鍵能耗設(shè)備耗能超過總能耗的85%。中電聯(lián)相關(guān)數(shù)據(jù)表明,2020年和2021年全國全口徑非化石能源發(fā)電量分別為9.8×108kW和1.11×109kW,分別占到當(dāng)年總發(fā)電裝機容量的44.7%與47%。提高水廠用電中非化石能源的比例,可有效降低凈水處理過程中的能耗與碳排放。東京自來水公司結(jié)合試運行計算與實際發(fā)電成效,評估太陽能發(fā)電設(shè)備和水力發(fā)電設(shè)備的使用壽命分別為20年和22年,在公共系統(tǒng)的支持下,通過自用和售電獲利的方式,可適當(dāng)降低電力成本、減少碳排放,有望在壽命期內(nèi)收回建設(shè)和維護成本。豐順大羅水廠的建設(shè)過程中充分利用了廠區(qū)建筑物房頂及池體,通過采用“門式剛架屋面加蓋”等方式的光伏設(shè)備鋪設(shè),為廠區(qū)生產(chǎn)用電提供保障并抑制了池體內(nèi)水藻生長。
2.1.3 技術(shù)創(chuàng)新
少人/無人化水廠是當(dāng)前現(xiàn)代化水廠發(fā)展的主要目標(biāo)之一,為實現(xiàn)高效、少人工、自動化的設(shè)備運行,將電氣自動化及人工智能運用于水廠,將有助于提高生產(chǎn)管理效率,保障供水可靠性,降低誤差、減少能耗(圖2)。以蘇州吳中水廠為例,該廠通過電氣自動化控制系統(tǒng)的應(yīng)用,實現(xiàn)精準(zhǔn)排泥,同時自動加藥系統(tǒng)能夠與水源地水質(zhì)、過程水水質(zhì)、出廠水水質(zhì)實現(xiàn)多參數(shù)聯(lián)動,通過數(shù)據(jù)指導(dǎo)生產(chǎn)管理,有效降低了能耗,提高了工作效率。其自研的管網(wǎng)補氯一體化裝置可實現(xiàn)聯(lián)網(wǎng)全自動化運行,降低前端余氯指標(biāo),有效提升下游管網(wǎng)余氯,提升用水品質(zhì)(圖3)。武漢余氏墩水廠在自動化改造中,建設(shè)了采用PLC控制的自動加藥控制系統(tǒng)、進排水自動控制系統(tǒng)等,實現(xiàn)均勻配水、穩(wěn)定出水,降低了能耗。
在工作實踐中,電氣自動化控制技術(shù)對提高生產(chǎn)效率、減少勞動力成本、降低能源與材料的消耗等有著較為明顯的積極作用,然而其在面對部分生產(chǎn)預(yù)警時,相比于工作閱歷豐富的熟練技術(shù)工、工程師,存在處理上的滯后性,且對于突發(fā)性問題的解決能力有限,仍需人力介入。因此,推動發(fā)展供水行業(yè)人工智能技術(shù)尤為重要,可依托人工神經(jīng)網(wǎng)絡(luò)與自我學(xué)習(xí)能力,預(yù)測用水需求并智能化調(diào)控設(shè)備功率,實時依照水源質(zhì)量調(diào)節(jié)工藝確保出水穩(wěn)定,智能預(yù)測水質(zhì)波動并及時預(yù)警等。
2.1.4 節(jié)水措施
我國供水管網(wǎng)建設(shè)年代跨度大,管道類型普遍有鋼管、鑄鐵、球墨鑄鐵、預(yù)應(yīng)力混凝土、塑料等,管道布置日益復(fù)雜緊密,受地質(zhì)變化、路面沉降、施工、材料老化、道路振動等因素影響,自來水管道滲漏難以避免。滲漏導(dǎo)致的凈水外泄將進一步提高水廠面對同等用水需求時的處理水量,有必要對管網(wǎng)巡查、檢漏專業(yè)工作人員強化學(xué)習(xí),并更新檢測技術(shù),進而確保供水管網(wǎng)運行穩(wěn)定。
2.2 排水過程的碳減排可行路徑
與鋼鐵、有色金屬行業(yè)等高耗能的行業(yè)相比,污水處理系統(tǒng)的能耗因其相對較低,被人們長期忽視,但實際上污水處理也屬于能耗密集型行業(yè)。通過強化資源再利用、優(yōu)化污水處理工藝與技術(shù)、降低單位用電碳排放等有助于污水廠實現(xiàn)節(jié)能減排。
2.2.1 廢水回用
對于經(jīng)處理后達到非飲用水標(biāo)準(zhǔn)的尾水,可在檢測后確保其達到相關(guān)回用水質(zhì)要求,用于不與人體直接接觸的用水,例如可用于廠區(qū)/園區(qū)綠化用水、風(fēng)機冷卻循環(huán)水及帶式脫水機的濾帶沖洗水等。
2.2.2 技術(shù)創(chuàng)新
生活污水的處理技術(shù)多種多樣,但目前應(yīng)用廣泛、技術(shù)成熟的處理技術(shù)一般是通過外部添加能源、碳源或藥劑對污染物進行降解,此過程會向外界環(huán)境排放大量溫室氣體,減少額外能量、碳源的輸入,將有助于降低污水廠碳排放。在副產(chǎn)品利用方面,當(dāng)前的工藝技術(shù)中多采用焚燒發(fā)電、厭氧消化產(chǎn)出甲烷、生物產(chǎn)氫等途徑,對污水處理過程中其副產(chǎn)物污泥進行能源轉(zhuǎn)化。例如,日本部分污水廠將熱能用于供暖及融雪工程;德國卡地茨污水處理廠綜合利用太陽能發(fā)電、廢水發(fā)電、熱能發(fā)電、沼氣發(fā)電4種發(fā)電方式解決廠區(qū)自身電能需求;青島光威污水處理廠、六圩污水處理廠利用沼氣發(fā)電技術(shù)減少外部輸入電能。Schaubroeck等與Besson等將生命周期評估法應(yīng)用于奧地利Strass污水處理廠的工藝研究,表明污泥消化產(chǎn)生的沼氣等可生產(chǎn)充足電力并對外輸出并網(wǎng),獲取一定經(jīng)濟利益。圖4展示了美國格雷沙姆污水處理廠通過工藝優(yōu)化提高沼氣產(chǎn)量,使用燃氣發(fā)電機.html'>電機組將可再生沼氣熱電聯(lián)產(chǎn)與太陽能發(fā)電協(xié)同利用,實現(xiàn)能源凈零,厭氧發(fā)酵池的副產(chǎn)品仍可作為肥料回用于農(nóng)田。
王京凡等的研究也指出,未來可持續(xù)的工藝是新型AB工藝,即A段負責(zé)高效碳捕獲,目的是使污水中的有機物在生物氧化之前被捕獲,后續(xù)用于能量回收,B段實施低碳新技術(shù)(如使用厭氧氨氧化技術(shù)減少外加碳源),進一步去除污水中的污染物。
2.2.3 新能源應(yīng)用
國內(nèi)污水廠的耗電量普遍達0.29 kW·h/m3,相較于美國的污水廠耗電量(0.2 kW·h/m3)而言,該數(shù)據(jù)顯然遠超發(fā)達國家。通過工藝改進,在降低單位廢水處理耗電量的同時,減少的單位電耗碳排放量將有助于降低廠區(qū)整體碳排放量。污水廠占地較大、樓層較低,采用太陽能、風(fēng)能等新能源將有助于減少廠區(qū)所用市電需求量(圖5),Goswami等研究了在污水處理系統(tǒng)中開發(fā)浮動太陽能光伏(FSPV)系統(tǒng),將光伏組件漂浮在水面上實現(xiàn)太陽能發(fā)電,15 MW太陽能光伏系統(tǒng)可向電網(wǎng)供能26 465.7 MW·h/年,減少蒸發(fā)788萬m3的水,減少CO2排放量近52萬t,有助于污水廠向可持續(xù)發(fā)展轉(zhuǎn)型。劉玉濤等對山東某地下污水廠開展實例分析,論證了通過建設(shè)包含光伏發(fā)電、沼氣發(fā)電等在內(nèi)的多能互補綜合能源系統(tǒng),可實現(xiàn)污水廠的穩(wěn)定供電,每年可節(jié)約標(biāo)準(zhǔn)煤2 855 t,減排CO2以及其他大氣污染物排放7 699 t。
3 總結(jié)與建議
3.1 打造“低碳水務(wù)”是邁向水務(wù)“碳中和”的必由之路
水是人類日常生活和社會發(fā)展不可或缺的重要物質(zhì)資源,污水直排所產(chǎn)生的黑臭水體在厭氧環(huán)境中會增加大量碳排放。水務(wù)行業(yè)的減碳舉措既能夠直接推進水環(huán)境治理環(huán)節(jié)的碳排放協(xié)同控制,又可有效覆蓋全行業(yè)用水過程的碳減排?!暗吞妓畡?wù)”可通過新技術(shù)的應(yīng)用降低單位用電量和藥劑投加量,從而減少額外能量和碳源的輸入,同時依靠廠區(qū)內(nèi)新能源的使用、副產(chǎn)物能源轉(zhuǎn)化等方式實現(xiàn)供排水行業(yè)“碳中和”目標(biāo)。
3.2 實現(xiàn)水務(wù)行業(yè)“碳中和”的關(guān)鍵是管理策略與技術(shù)創(chuàng)新
(1)明確階段發(fā)展目標(biāo),提高從業(yè)人員對水務(wù)行業(yè)實現(xiàn)“碳中和”的共識。
水務(wù)行業(yè)實現(xiàn)“碳中和”不是一蹴而就的,既要避免運動式的“碳沖鋒”,也要避免全行業(yè)從業(yè)者對實現(xiàn)“碳中和”的“事不關(guān)己”。需要明確階段性發(fā)展目標(biāo),優(yōu)先減少廠區(qū)能耗、物耗,結(jié)合技術(shù)創(chuàng)新、工藝改良實現(xiàn)“碳達峰”,再進一步通過引入新能源、降低單位水處理碳排放過渡至“碳中和”。通過階段性目標(biāo)的設(shè)立及從業(yè)人員培訓(xùn),逐步提高水務(wù)行業(yè)工作人員對實現(xiàn)“碳中和”必要性、緊迫性的認識,自上而下與自下而上同步提高全行業(yè)探索節(jié)能減排技術(shù)與管理措施及積極性。
(2)研發(fā)低碳處置技術(shù),促進產(chǎn)業(yè)轉(zhuǎn)型與升級。
進一步研發(fā)凈水處理、污水處置過程中的新技術(shù)、新設(shè)備,提高處理運行效率、減少能耗與藥耗、增加能源回收利用比例,積極開發(fā)包括太陽能、風(fēng)能等適用于水務(wù)行業(yè)的可再生能源,推動工藝過程無人化、處理裝置智能化,實現(xiàn)水務(wù)行業(yè)處理廠穩(wěn)定運行、節(jié)約外能輸入、資源再利用,使相關(guān)處理過程由能源消耗型轉(zhuǎn)化為能源外溢型,實現(xiàn)“碳中和”運行,促進包括溫室氣體減排技術(shù)在內(nèi)的研發(fā)與應(yīng)用。
(3)開展全生命周期評價,推動行業(yè)全產(chǎn)業(yè)鏈碳減排。
全生命周期評價有助于清晰量化各流程中物質(zhì)流動時碳排放情況,分析碳足跡,評估不同流程、不同技術(shù)下廠區(qū)溫室氣體排放潛能。應(yīng)進一步健全水務(wù)行業(yè)全鏈條產(chǎn)品生命周期評價,實現(xiàn)“水源-凈水處置-終端用水-污水處置-排水”全過程碳排放評價,為開發(fā)綠色低碳水務(wù)產(chǎn)品、進一步降低水務(wù)行業(yè)碳排放提供支撐。
作者簡介
作者:李光明.博士,同濟大學(xué)環(huán)境科學(xué)與工程學(xué)院教授、博士生教師。研究方向為包括水質(zhì)控制與水資源利用過程在內(nèi)的污染預(yù)防與控制過程。曾任英國東英吉利亞大學(xué)榮譽教授(Honorary Professorship of University of East Anglia ) (2007年-2012年):兼任上海重金屬污染控制與資源化工程技術(shù)研究中心技術(shù)委員會副主任,中國再生資源產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟理事會常務(wù)理事,英國《水和環(huán)境雜志》( Water and Environment Joumal)編委;上海市科普基金會理事長。